Ideal Electrolyte Solutions

✓ If interactions between solute particles are minimal, the effective molality or molarity of an electrolyte solution will be the sum of the concentrations of particles from all sources; i.e., ions and any undissociated molecules (in the case of weak electrolytes).

Strong electrolyte: 0.100 m NaCl

NaCl(s)
$$\rightarrow$$
 Na⁺(aq) + Cl⁻(aq)
Add 0.100 m 0 0
Get 0 0.100 m 0.100 m \rightarrow $m_t = 0.200$ m

Weak electrolyte: 0.100 m HOAc

van't Hoff i Factor

- In real solutions, ions interact (non-ideal behavior), making their *effective concentrations* and the associated colligative effects less than expected.
- An empirical measure of the dissociation of a solute is the *van't Hoff factor*, *i*, defined by any of the following:

$$\Delta T_{\rm f} = imK_{\rm f}$$
 $\Delta T_{\rm b} = imK_{\rm b}$ $\pi = iMRT$

If ions did not interact in electrolyte solutions (ideal behavior), for *strong electrolytes* ideal values of *i* would be equal to the number of ions per formula unit.

Electrolyte	Ideal i
NaCl	2
K ₂ SO ₄	3
$(NH_4)_3PO_4$	4

van't Hoff i Values of Real Solutions

Real solutions of strong electrolytes have observed values of i that are less than the ideal values, due to inter-ionic interactions.

$$i_{
m observed} < i_{
m ideal}$$

Observed *i* values become less ideal with greater concentration and more ideal with greater dilution.

Concentration K ₂ SO ₄	Value of <i>i</i>
0.100 m	2.32
0.0100 m	2.69
0.00100 m	2.84

Weak electrolytes, which produce relatively few ions in solution, have observed *i* values slightly greater than 1, the ideal value for a non-electrolyte.